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ABSTRACT

The U. S. Air Force Grant for Basic Research AFOSR-77-3278 to the Texas Tech

Optical Sciences Laboratory was in effect for the period March 1, 1977 to

March 31, 1979. The work of AFOSR-77-3278 was a continuation of research

initiated under Grant No. AFOSR-73-2451 which covered the period October 1,

1972 to February 28, 1977. The total period covered by these two grants

covered six and one-half years. The work included four topics: General

Laser Resonator Theory, Distributed Reflection of Light and Damage to Optical

Elements, Oxide Layer Thickness on Commercial ALCLAD, and Multipass Chemical

Laser Power Amplifiers. In all of these areas, fundamentally new approaches,

techniques, and results were developed and achieved. The work was interrupted

on March 31, 1979 because, instead of a formal proposal for continuation, Texas

Tech submitted, instead, a request for Air Force guidance and evaluation of the

relevance of the work to the Air Force Mission. This evaluation, presumably,

is not yet complete, but it is hoped that the work will be continued in the

future.

AIR FORCE OFFICE OF SCIENTIFIC RLSACH (AISC)
NOTICE OF TRAPSMITTAL TO DDC
This techr:i~il report has been reviowed ad is
approved for Public release AW AiR 90-12 (Tb).
Distribution is unlimited.
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FINAL SCIENTIFIC REPORT

AFOSR-77-3278

P The U. S. Air Force Grant AFOSR-77-3278 was in effect for the period March

1, 1977 to March 31, 1979. The work was a. continuation of work initiated under

the grant AFOSR-73-2451 which covered the period October 1, 1972 to February 28,

1977. Over the period of these two. grants, comprising six and one-half years,

work was conducted on four topics: General Laser Resonator Theory (GRT),

Distributed Reflection of Light and Damage to Optical Elements (DRL), Oxide

Layer Thickness on Commercial ALCLAD (OLT), and Multipass Chemical Laser Power

Amplifiers (MPA). In all of these areas, fundamentally new approaches, techniques

and results were achieved.

Eight reports, comprising 555 pages, were completed and submitted under

AFOSR-73-2451. The Final Summary Report, TTOSL-FSR-l, for AFOSR-73-2451, filed

September 12, 1977, reviewed this initial work. Two additional reports, com-

prising 282 pages, were completed and submitted under AFOSR-77-3278. These

reports are listed in the REPORTS section below. In Section II, a brief overview

is given for the work on General Laser Resonator Theory accomplished under this

grant. Specifically, a mathematically consistent integral equation developed

under the AFOSR funding to Texas Tech, the Source Integral Equation, is compared

with the Fox-Li integral equation and the nature of the true laser resonance

condition is exposed. The analysis is presented in terms of a functional equation

method, developed under the AFOSR grants, which is quite useful for approximate

solution of either integral equation. The Fox-Li equation does not account

properly for the transverse dimensions of the cavity in the resonance condition.

The mathematical structure of the actual laser resonance condition, revealed

for the first time under our AFOSR grants, is illustrated. Possible future

work is mentioned in Section III.

2



I. REPORTS

Two reports, comprising 282 pages, were completed and submitted under

AFOSR-77-3278. These are listed below. For description of eight previous

reports, comprising 555 pages, see the Final Summary Report, TTOSL-FSR-l,

for AFOSR-73-2451, filed September 12, 1977.

TTOSL-OLT-3, August 1, 1977, (137 pages)

"Ellipsometric Determination of Properties of Films on
Rough Surfaces such as Aluminum Alloy Aircraft Skin" by

Dr. John D. Reichert and
Janet S. Brock

TTOSL-GRT-2, December 1, 1977, (145 pages)

"Integral Equations and Functional Methods for Laser
Mode Profiles" by

Dr. John D. Reichert and
Dr. Ajit Pal Kwatra

•H 5
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II. OVERVIEW OF GENERAL RESONATOR THEORY TOPIC

Based upon experience with somewhat similar boundary value problems, one

might expect a different type of laser resonance condition than that provided

by the Fox-Li equation and other "pseudo initial value problem" approaches.

It is indeed the case that the role of the transverse resonator dimensions is

altered in character and not fully delineated by such approaches. This and

related matters will be briefly considered here.

IIA. BASIC RESONATOR EQUATIONS

I For this discussion the Fox-Li Integral Equations (FLIE) will be compared

with another integral equation formulation which we call the Source Integral

Equation (SIE). For resonator theory the FLIE has been very useful and makes

I up in convenience and familiarity what it may lack in mathematical consistency.

For some time, under support for AFOSR and AFWL, we have investigated the SIE,

which is mathematically consistent, but not as tractible as the FLIE. In the

* large Fresnel number limit, the two equations predict the same output beam

profiles: the Hermite-gaussians and Laguerre-gaussians. For smaller Fresnel

number the predictions differ.

0 To proceed simply, let us consider a model using scalar optics and empty

(passive) cavities with spherical mirrors of circular aperature in symmetrical,

unstable configurations. In addition, a number of frequently used simplifying

4



approximations, such as paraxial light and distant, nearly flat mirrors, will

be presumed. In the steps below, the reader is invited to settle for glimpses

P of the "appearance" of the equations, in lieu of algebra, derivations, math-

ematically clear explanations, and proper explanation, even, of the notation,

Using two-dimensional vectors p and q for transverse coordinates, one can

t put the two equations in the form:

I1
t (FLIE) -MP (') = C ffe iko p(q) d2

M P2

(1)

i ikPl ic e i kP2
(SIE), D )--d q

in these equations:

p is the Fox-Li spatial amplitude (at the actual mirror surface) such

that jipJ2 is interpreted as proportional to the output at the mirror;

D is the "source density" (current) on the actual mirror surface, propor-

tional to the output at the mirror;

a is an ad hoc eigenvalue, introduced as an effort toward "self-consis-

tency," interpreted as a loss factor such that 1-I[d 2 is the "frac-

tional energy loss per transit";

c 1 1 is a symmetry factor, positive for modes symmetric about the

resonator transverse mid-plane and negative for antisymmetric modes;

27i
* ~ is the wavelength of the monochromatic output;

5



1

M is the flat, circuilar disc projection of the actual mirror onto a

a transverse plane;

P2 is the distance from a point on one mirror to a point on the other,

and p, is the distance to a point on. the same mirror,

Features of interest which may be observed from the appearance of Eqs.

(1) are:

1) the FLIE is an integral equation of the second kind which

can be solved by iteration, vwhereas the SIE is an integral

equation of the first kind, less tractible;

2) the dependent variables p and D do not have the same

physical meaning or units, but are related so that each

can represent the shape of the output beam profile;

3) because the SIE is mathematically consistent, no ad hoc

self-consistency factor a is present;

4) the notions of "transits" and "loss per transit" are not

gerimain (or even defined) in the SIE approach, which is a

boundary value approach, not an initial value approach as

in the FLIE.

Replacing p and ' by the dimensionless variables 1 and _, normalized by

* the aperture radius, and removing the same phase factor (quadratic in I'I)

from both i and D, one can obtain the following approximate versions of Eq.

():
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14.N(u-24

(FLIE) fF() M i e le Nu~ F( )

ika[ -v-uI + B( 2 -V2 ](Sa fe f+-.sVu-U .
(SIE) i eMfs -( (2)

4.

iENeL ffe M fs(u)d2u

where a is the aperture radius, L is the mirror vertex separation, N is the

Fresnel number, M is the magnification,

B =--A- 9 gl = I I + L2L R

and R is the (negative) mirror radius of curvature.

Because we wish to compare the solutions and, in particular, the resonance

conditions of Eqs. (2), a method of solution is required. For this purpose,

I will sketch a functional equation method (FEM) that is useful near the

geometrical optics limit of large Fresnel number. As stated above, the two

equations have the same Laguerre- gaussian solutions in this limit. It is

necessary for us to presume that we are close enough to this limit that the

solutions fF and fs resemble each other to the extent that, for modes fF with

slowly varying profile shape, the corresponding modes f will have slowly

varying profile shape.

Now, from the appearance of the FLIE in Eqs. (2), one can observe that it

is manifestly self-consistent to presume that fF is a slowly varying function.

The same observation, however, cannot be made directly from the appearance of

7
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of the SIE. Thus, fscan be presumed slowly varying only by appealing to

its similarity to f mentioned above.

Now, for large N the kernels in Eqs. (2) allow a reasonably slowly varying

function f to contribute only near the point of stationary phase. By specif-

ically studying the nature of the kernels and employing stationary phase and

Taylor expansion techniques, one can approximate Eqs. (2) by reducing them to

functional equations:

f (FLIE/FEM) -on F(v) G(-) F

(3)
(SIE/FEM) H(-v)Fs( G() FS(V)

For Eqs. (3), the behavior at the singular point (- = 0) of the functional

equations has been extracted:

f(;) I;In F()

where n is an arbitrary integer. The normalization FF(0) 1, Fs(O) = 1 has

been selected. The functions G and H are defined:

G( ) iNceikL If eiaMN(-d _ ;)2d24

Mn  M

H(e) - a f ika[jIu--I + B(Ii I2_IJI2)
i M * d2 .

8Ki.
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Once convenient analytical expressions have been obtained, giving simple

and accurate approximations for G and H, the functional equations can be easily

handled and solved by iteration. This functional equation method (FEM), thus

puts the FLIE and the SIE on a similar footing. Both can now be solved by

an iteration procedure and, in either case, the computational effort is dramat-

ically less than that involved for the original integral equation.

It should be clear that Eqs. (3) cannot be used at M 1; i.e., for flat

mirrors, because the dependent variable drops out, leaving inconsistencies.

The derivation has presu;-ed M > 1 and the importance of neglected higher order

te-rms increases as M - 1.

The solutions of the functional equations have been compared with solutions

of the FLIE for cases with N z 10, M = 3. Although the mode shapes will not be

exhibited here, the following observations were made. The FLIE/FEM mode pro-

files, agreed very well with the FLIE mode profiles, confirming the utility of

the FEM. The SIE/FEM modes showed great similarity to those for the FLIE, but

exhibited a high frequency ripple of small amplitude riding on the overall

shape. This perhaps is the general nature of the SIE corrections to the FLIE,

but this supposition is tentative at present.

IIB. LASER RESODN.NCE CONDITIONS

Now that Eqs. (3) are before us, we are finally able to discuss the

resonance conditions. Eqs. (3) cannot have solutions unless they are consis-

tent at V 0. Since F(O) = 1, it must, therefore, be true that:

(FLIE) -an =G(O)

9 (4)

(SIE) H(O) G(O)

9 "



The difference in these two resonance conditions is dramatic. In the case of

the FLIE, the known function G(O) of.the resonator parameters simply defines

an and is in itself not a condition or restriction. For the SIE, on the other

hand, two definite know- functions of the resonator parameters must be equal

or solution is impossible. Since H and G are complex functions, each of the

conditions in Eqs. (4) is actually two requirements, one for the real part and

one for the imaginary part.

The FLIE condition in Eq. (4) is converted to a resonancecondition in the

following .;ay. In the philosophy of the Fox-Li approach, solutions are con-

sidered to be physical only if a = lole is such that

FLIE 6(L, a, N, M) = m (5)

for some integer m. Now, from Eq. (4) and the definition of G above, it can

be shown that

?_tileN i n- MN

n - 2ieL e 2 sin' 2Mn+l e

Gbtaining the phase ofa n from this expression and applying the ad hoc condition

shown in Eq. (5), one finds the approximate FLIE resonance condition:

FLIE L z: [m + - T] (6)

Even though Eq. (6) has a simple appearance, this is deceptive because M

and N are complicated functions of L. The resonance conditions for L are

easily determined nurerically, however, by iterating Eq. (6), because conver-

10
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gence is very fast. The resonance values are spaced at a separation of ap-

proximately one-half of a wavelength. Table I shows some of the values of m

and L, around L = 100 cm for a wavelength X = 10.6p , the wavelength of a

CO2 laser. The radius of curvature, R is taken to be -150 cm and the aper-

ture radius, a, is taken to be 1 cm.

Since the Fox-Li resonance condition applies a constraint only to 6, Ial

is left at what ever value G(O) takes on at resonance. Thus, the fraction
th

of the energy lost per transit for the n mode is given by

1- 2l2  2 1 - ,- 2 N 2
2 (7)

These approximate results obtained from the lowest order FEM may be compared

with accurate computer solutions of the FLIE obtained by Siegman For this

comparison, the approximate eigenvalue for the fundarental mode (n = 0) for

t M = 5 is shown in Fig. 1 along with the corresponding values obtianed by

Siegman. The results are shown as a function of the quantity Neq defined by

Siegman:

NNeq _= (M - 1. (8)

The locations of the peaks and valleys agree reasonably well for the two

curves.

p

In order to study the SIE resonance condition of Eq. (4), the definitions

of G and H given above are used. It can be shown that the resonance condition

can be put in the form:
p

- ika(l + B) ikL iMN (9)
I+2 M

-, . iIIII I II I I II I I11



TABLE I

Resonance Conditions for the FLIE

a = 1 cm, R =-150 cm,. = 10.6 ~j=0.00106 cm

L = (L0O+L1) m m 0+

L= 188,665.348535 , i 0 =188680

m m1  L (cm)L

13580 0 99.9926347240 0

188681 1 99.9931647436 1.000037

188682 2 99.9936947638 2.000075

188683 3 099.9942247834 3.000112

188684 4 99.9947548035 4.000150

188685 5 99.9952848231 5.000187

188690 10 99.9979349282 10.000375

................................

188700 20 100.0032351210 20.000749

.................................
188710 30 100.0085353200 30.001125

..................................
188720 40 100.0138355 180 40.001498

..................................
188730 50 100.0191357170 50.001874

12
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To provide geometrical insight, Eq. (8) is rearranged to obtain:

~i2Tra (1+B) 2irfL r, ~ ~ l

II -C-e' +" 2MI~i I

where, for simplicity, only the fundame-ntal mode (n = 0) is considered.

The left-hand side of Eq; (9), when plotted in the complex plane, produces

a circular spiral with center at the origin and a radius of 1/(l + 2B). For

fixed values of a, when L increases, B decreases since B = a jg]T /2L. Thus,

the spiral moves clockwise in the direction of increasing radius of spiral as

illustrated in Fig. 2. Similarly, the vector on the right hand side will scan

the Ahole circular disk with center at (1, 0) and radius bounded by 2/M. Since

t M increases as L increases, the radius will decrease with the increase of L and

the vector will move rapidly in the counter-clockwise direction. The region

scanned by the RHS vector is shaded in Fig. 2. The resonance condition is

satisfied when the LHS vector and the RHS vectors meet, as illustrated by the

thick arrows in the figure. The area shaded by crossed lines indicates the

region in which the resonance condition can be satisfied. Keeping in mind

that these vectors will also rove if a is varied, one finds, for approximately

fixed value of a, the resonance conditions for L to be spaced by approximately

one-half of a wavelength (as was predicted by the FLIE resonance condition).

This is due to the fact the LHS is a very slowly varying function of L compared

to the RHS which will make approximately a full circle when L is changed by a

wavelength. The resonance condition may be satisfied twice in a change of L
I

by one wavelength, due to the two possible values, c = ± 1, for modes symmetric

and antisymmetric about the resonator midplane. The numerical values of a and

L, satisfying the resonance condition, are obtained by solving the simultaneous

equations mentioned above.

14
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In Table II a sampling of ten resonance points (a, L) is shown, taken from

a list of about eighty consecutive points which were determined. For this list,

t a was held essentially constant and the spacing in L of consecutive resonances

was essentially X/2. To obtain resonance it was necessary to increment a by

0.000000021 cm as L increased by 0.000530021 cm. The wavelength used was

= l0.6p = 0.00106 cm.

Similarly, in Table III a sampling of resonance points determined for

nearly constant L is given. The spacing in a of consecutive resonances was

approximately 
X.

To understand clearly the differences between the FLIE and SIE resonance

conditions,one can show that for both the FLIE and the SIE the resonance con-

ditions are essentially governed by the relation:

(FLIE) m NM a
S(m +(-)) to order.(0

(SIE)Y 2

[One should recall that N and M also depend on L.] However, as shown earlier,

this relation is the sole resonance condition for the FLIE, but such is not the

case for the SIE. For the SIE there is a second condition that must be satis-

fi ed:

(SIE) Isin["- (La eq 1 si( M. (11)

The requirement that both Eq. (10) and Eq. (11) be satisfied simultaneouslyI

means that, for fixed X and R, both L and a must be determined to satisfy the

"double resonance condition".

For fixed values of X and R, continuous curves L(a) are defined by Eq. (10)

which satisfy the FLIE resonance condition. For the SIE, on the other hand,

only discrete points (L, a) are allowed.

16



TABLE II

t Resonance conditions for the SIE

R =-15b cm ,1 = 0.6 p

a = (a0 + a) x L = (L0 + L )

a 933.96255 L = 192,545.35825

a (cm) aI  L (cm). L

.9900JD318 0 102.0490398725 0

.990000339 .0000198 102.0495698946 1.0000396

.990000359 .00003868 102.0500999169 2.00008577

t .990000380 .0000585 102.0506299390 3.00012547

.990000400 .00007735 102.0511599610 4.000167

.. ....... ......... .... e. . .. .. .......

.990000502 .0001736 102.0538100710 9.0003745

. . . . ..l e . . . . . . .. o . . . . . . . . . . .. J . . .. . . .

.990000543 .0002122 102.0c48701150 11.00045755

.e.. ..... ........ ...... ,.... .. o... ...... -

.990000583 .00025 102.0559301590 13.00054056

.990000624 .0002887 102.056990203 15.00062358

.... ... .e ....... o e.... .. .... e .. e . . . .

.990003978 .00345283 102.144443839 180.007484

17
4'



TABLE III

Resonance Conditions for the SIE

R A150cm=.I0

a =(A 0 + a,) x L L + 10 L

a 0  933.9626415 L 0  192,549.358416

9akcm) a IL(m

.990000400 0 102.051159961 0

.991039253 0.9800500 102.0511.41470. -0.0348868

.992078025 1.90600236 102.051122790 -0.07013208

.993115974 2.9392207 102.051104025 -0.1055377

t.0994153439 3.9179613 102.051085313 -0.14084340

.995190486 4.8963075 102.051066882 -0.17561888

.996227186 5.8743264 102.051049220 -0.20894340

18
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In principle, this difference has some impact on the design of a resonator.

If one designs from the Fox-Li viewpoint, any three of the parameters X, a, R,

L can be arbitrarily selected and the fourth determined from Eq. (10). On the

other hand, design from the SIE viewpoint allows arbitrary selection of only

two of the four parameters and the othe'r two must be determined from Eqs. (10)

and (11). In addition, there is a fifth parameter, jai, in the Fox-Li approach,

conceptually related to the output coupling.

Since it is believed that the mathematically consistent SIE approach should

t be more accurate than the FLIE approach, one might expect that there would be

some possible benefit in the SIE design approach. There is no experimental data

available at present to allow assessment of this contention.

As a final brief note in this discussion, let Us simply present without any

derivation the lowest order SIE/FEM resonance conditions for flat circular

mirrors. Imagine a right triangle whose legs are the mirror separation and the

aperture radius

L = LX and a = aX

* and call the hypotenuse (rim to vertex)

H H X.

* For flat mirrors there are three sets of points (L, a) which produce resonance

for fixed X and R. These sets can be summarized rather elegantly by means of

the triangles shown in Fig. 3. For each set, one of the three sides is "op-

tically short circuited" and the other two legs are of "equal optical length".

Some care is required because of the availability of half-integer wavelength

to H and L due to resonator symetry. The full description of three sets is

given by:

19'
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Set I. a = m, H = L + n

Set II. L= m H + a +f+, = )+

Set III. H = L a= + n ()n+l = +l
, a+. = () =(-)

Note that m and n are arbitrary integers, but the integers m and n are correl-

ated with the sy.rr etry indicator (mode parity)c.

Although the expressions above are interesting and offer insight, they are

not in suitable form for numerical computation of resonance conditions. For

such purposes, it is useful to note that

a2  - N
H vL 2 + a 2Ll + :L +-

2L[2

Using this expression to eliminate H from the descriptions above,reveals the

true complexity of the resonance conditions. For each of the sets,nuinerical

computation is extremely simple and, in fact, one can solve analytically for

L and a in terms of the integer generators m and n (or m and ; as the case

may be).. Such expressions, however, appear to offer less insight than that

presented in Fig. 3.

In sumary, we have used a functional equation approximation method to

compare resonance conditions for the FLIE and the mathematically consistent

SIE. The SIE resonance conditions indicate that the role of the transverse

resonator parameter a is misrepresented by the FLIE.
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III. POSSIBLE FUTURE WORK

The work at Texas Tech under U. S. Air Force Grants No. AFOSR-73-2451

and AFOSR-77-3278 has been very productive on all four topics as evidenced

by the eleven reports (850 pages). More or less by mutual agreement (or mis-

understanding) this work was interrupted on March 31, 1979 and has not con-

IP tinued. Instead of a formal proposal for continuation, Texas Tech submitted,

instead, a request for guidance and for evaluation of the relevance of the

work to the Air Force Mission. Because the AFOSR grants at Texas Tech has

been in effect for six and one-half years and because of substantial turn over

in Air Force personnel, it appeared to be appropriate to check signals between

Texas Tech, AFOSR, and the Air Force Weapons Lab. Texas Tech wished to deter-

mine if redirection of the work was necessary in order to enhance its contri-

bution to the Air Force Mission. To date the requested assessment by the Air

Force has not been completed.

A gap or hiatus in the work does not mean that Texas Tech considers results

produced under this grant to be unimportant. To the contrary, results such as

those discussed in Section II are new and potentially have great impact on and

application to Air Force laser weapon design and analysis. Texas Tech will

propose formal continuation of this work after appropriate response has been

received from the Air Force evaluation.
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